Requirements of Feasible Biofuel

- Time frame: 2012, 2017?
- Doesn't compete with food supply
 - Non-food crop, non-food component of food crop, MSW
 - Marginal land or existing degraded crop land
- Has neutral or positive environmental impact
 - Less GHG emissions relative to petroleum-based jet fuel
 - Maintains soil and water quality, protects wildlife and biodiversity
- Cost-reasonable, vs cost-competitive
 - Incorporates security value of domestic fuel source and increasing costs and insecurity of imported oil
- Meets 50% of airforce jet fuel needs
 - 1.2 bg/y (of 2.4 bg/y total) airforce; 13 bg/y total domestic commercial aviation longer-term
 - 14 Mt biomass, 1.4Mha = 3.5Mac; 150 Mt/15Mha/37Mac

Feedstock Supply Session 1: Carbon and greenhouse gas emissions (biofuel C intensity)

PANELISTS

- David Bransby, Energy Crops Research, Auburn University
- Michael Wang, Argonne National Laboratory
- Kurt Thelen, Crop and Soil Science, Michigan State Univ.

QUESTIONS

- What crops (here and after including forest crops) are best for production of biofuels for aviation in terms of production capacity?
- Which crops have greatest potential for low cost production (cost per MJ of bioenergy produced)?
- What are the comparative carbon and greenhouse gas implications of the potential biofuel feedstock crops?
- What are the carbon or greenhouse issues for biofuel production and use?

Feedstock Supply Session 2: Sustainability, input requirements, etc.

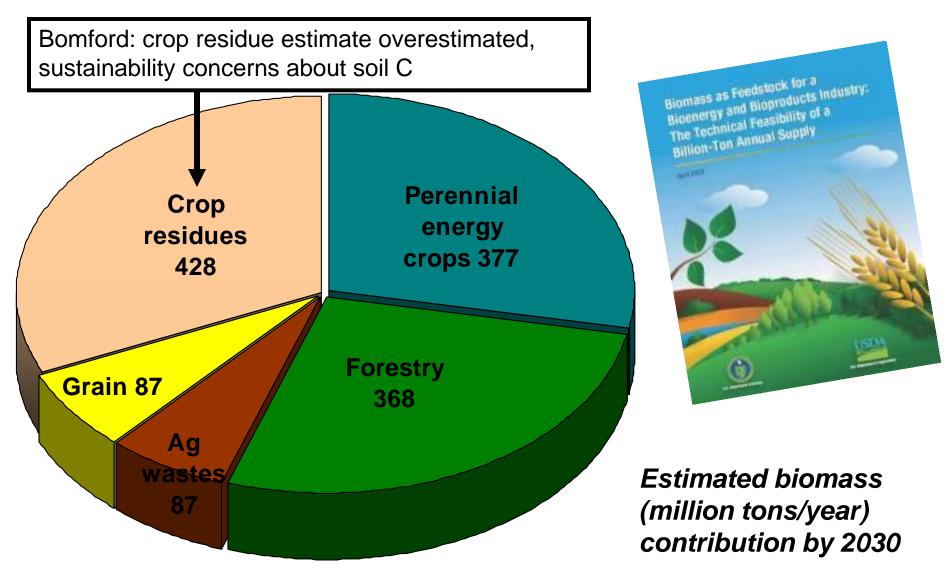
PANELISTS

- Joseph Burton, Research Leader ARS/USDA
- Burt English, Professor and Research Coordinator, Agricultural Economics, University of Tennessee Knoxville
- **Ilhami Yildiz**, Professor, Energy for Sustainable Society, California Polytechnic

QUESTIONS

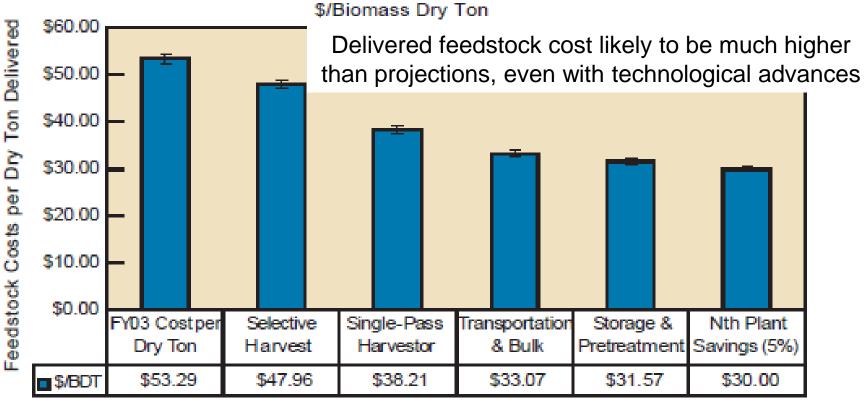
- How do we define sustainability?
- Which crops can be produced in a sustainable manner with regard to inputs---soil, water, greenhouse gas emissions and wildlife diversity?
- What are the land use implications of aviation biofuel from the most promising biofuel crops (in the US and Globally)?
- Assuming domestic US production of biofuels for aviation, is there greater potential for oilseeds, fermentation based biofuels from starch, sugar, and or cellulosic crops?

Feedstock Supply Session 3: Food vs. fuels issues


PANELISTS

- Michael Bomford, Research Scientist, Kentucky State University
- Sharon Shoemaker, Executive Director of the California Institute of Food and Agricultural Research, University of California, Davis
- Goro Uehara, Professor of Soil Science, Department of Tropical Plant and Soil Sciences, University of Hawaii

QUESTIONS


- What are the food versus fuel issues for biofuels?
- Are production and processing possibilities and implications for food/fuel location specific?
- What government policies could accelerate biofuels production?
- What can the Air Force contribute to the development technology, organization and policy that would accelerate biofuels development?

2005 US-DOE Biomass Feedstock Supply: "Billion Ton Study"

Perlack et al., 2005; http://bioenergy.ornl.gov

Figure 1.6 shows how the research and technology development outlined in this roadmap lays out a viable path for reducing this cost to the target \$30/dry ton delivered.

03-GA506969-01

Figure 1.6. Research and technology development pathway towards achieving feedstock price target. Source: Biomass feedstock supply roadmap, US-DOE, Nov 2003.

Region	Feedstock	Biomass	Food	GHG	Water,	Water,	Soil-C
Ŭ		Quantity	v Fuel		quantity	quality	
South	forestry	+++	0	+++	0	?	?
	switchgrass	++		?++	0	?++	?+
	rapeseed*	+	?	?	0	?	?
Midwest	waste cooking	+	0	++	0	0	0
	oil-animal fat						
	switchgrass	+		?	0	?++	?+
	corn stover	+++	0		0		
	soybean	++			0		
Northeast	MSW	++	0	0	0	0	0
	woody crops	++	0	++	0	0	?0
West	dead timber	+++	0	++	0	0	0
	wheat straw	++	0		0	0	
	rice strawCA	+	0	0	0	0	0
	MSW	++	0	++	0	0	0
	Camelina	+		?	0	0	?
Alaska,	dead timber-AK	++	0	++	0	0	0
Hawaii							

Feedstock supply and performance characteristics by 2012

*Insert into existing cropping systems without loss of yield in those systems (rotations with wheat, substitution for cotton, others?)

Note: for "ready to go" biofuel crops (both perennial and annual), criteria include seed availability in commercial quantities and established agronomic best management practices. Economics and logistics not considered.

D '		_	T 1	OTTO			0.1.0
Region	Feedstock	Quantity	Food v	GHG	Water,	Water,	Soil-C
			fuel		quantity	quality	
South	forestry	+++	0	++++	0	?	?
	switchgrass	++++		?++	0	?+	?++
	rapeseed*	+	?	?	0	?	?
	sweet sorghum	+++	?	?	0	?	?
Midwest	waste cooking	+	0	++	0	0	0
	oil-animal fat						
	switchgrass	++		?	0	?++	?+
	com stover	+++	0		0		
	soybean	++		?—	0	?	?
	sweet sorghum	++			0		?
Northeast	MSW	++	0	0	0	0	0
	woody crops	++	0	++	0	0	?0
West	dead timber	+++	0	++	0	0	0
	wheat straw	++	0		0	0	
	rice straw	+	0	0	0	0	0
	MSW	++	0	++	0	0	0
	Camelina	+		?	0	0	?—
	Algae	+	0	?+	++		?+
Alaska,	Dead timber-AK	++	0	++	0	0	0
Hawaii	High yield grass	+	0	++	0	+	++

Feedstock supply and performance characteristics by 2017.

*Insert into existing cropping systems without loss of yield in those systems (rotations with wheat, substitution for cotton, other substitutions?)

Note: for "ready to go" biofuel crops (both perennial and annual), criteria include seed availability in commercial quantities and established agronomic best management practices. Economics and logistics not considered.

Feedstock supply: additional comments

- Timeline for commercial development of biofuels for jet fuel will be delayed unless Airforce cannot pay higher price for second generation biofuels.
- Kurt Thelen: what will it take to get growers to switch to new biofuel crops?
- One-third of country is covered by forest; excess supply of pine in the southeast.
- Dead timber from northward expansion of pine beetle is a considerable standing biomass resource; logistics of harvest is difficult where no existing logging infrastructure.
- Areas with high density of marginal and degraded land should be targets for dedicated perennial biomass crops
- Perform studies of biomass resources and potential supply in a 50-mile radius around all airbases.

Feedstock supply: additional comments

- A number of potential biofuel crops will need considerable investment in genetic improvement, which will require many years
 - Sweet sorghum, jatropa, etc.
- For all biofuel crops, an integrated approach is needed
 - Ecosystem impact broader than local environmental impact
 - Integrated biorefining and high value chemicals
- While ethanol can be upgraded to jet fuel, is this an efficient process? Answer has impact on viable options for biofuel crops and biorefining processes
- Municipal solid waste has infrastructure to utilize it in some areas, not in others. High tipping fee regions most promising.